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metry through gravitino condensation. We find that gravitino condensates destabilize the 
Minkowski background and generate a large cosmological constant. 
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Supersymmetric theories of fundamental interactions play a major r6le in any unification 

scheme, in particular in any theory containing gravity. This is because, in order to solve the 

hierarchy problem, it is convenient to have an effective Lagrangian describing interactions below 

the Planck scale Mp endowed with N=l supersymmetry. Since only spontaneously broken 

models are consistent with observation, it is important to find general mechanisms to generate 

supersymmetry breaking in supergravity. 

Classical super-Higgs effects can exist in supergravityll], and yield models with realistic 

physics and zero cosmological constant (at tree level)[2]. These models, however, strongly 

depend on the choice of matter content and superpotential and, in theories where the matter 

and interaction content are fixed, like strings or extended N > 4 supergravities, they cannot be 

reproduced. The only known ways of achieving tree level spontaneous supersymmetry breaking 

in string theory, through e.g. “Scherk-Schwarz” compactifications[3], seem unable to give a 

breaking at the scale of 1 TeV. 

String theories gave importance to the understanding of non-perturbative mechanisms for 

supersymmetry breaking, obtained for example via gaugino condensates f41. The trouble with 

gaugino condensates is that it has not been possible to find, using the effective field-theoretical 

action of strings, a concrete non-perturbative configuration yielding such a non-zero condensate. 

It is worth noticing that in globally supersymmetric QCD it is possible to find non-zero gaugino 

condensates (XX) , but their relevance for the problem of supersymmetry breaking strongly 

depends on other properties of the theory. For example, in the presence of massive matter 

multiplets minimally coupled supersymmetry remains unbroken even if (XX) # 0. 

Another possibility recently considered in the context of supergravity theories is to in- 

duce the supersymmetry breaking via gravitino condensates. Better, the gauge invariant u.e.z~. 

(D~,,&D(‘@) has been shown to be an order parameter for supersymmetry breaking f51. For 

completeness we will illustrate here the argument given in ref. [s]. 

The chiral U(1) current associated with a chiral matter supermultiplet 2 = (2,x) satisfies 

the following equation[5~6~7], in absence of superpotential: 

’ D,J@ = -- 
384?9 

Raad ‘Rabcd + . . . 

where l Rau = 1/2edef Robcf. 

The left-hand side of equation (1) is the fJ*Ba component of the vector supermultiplet z.Z = 

( 1’2, . .). Equation (1) is therefore related by supersymmetry to other equations, in particular 

to@ 

{Q,Xzl = erms vanishing on-shell, (2) 
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where & z D.ljlb - D&a E Dr,,tibl and n = 1/Mp. 

Equation (2) shows that a non-zero v.e.21. for &ljr”* breaks supersymmetry, and that the 

Goldstone fermion has a component along zz. In ref.[5] it was observed that, by applying 

straightforwardly the techniques of ref.[9], and evaluating the contribution of gravitational 

instantons to the gravitino condensate, one would obtain a non-zero value for &b+‘* equal to: 

(7&*@) = const . $. 

In eq. (3) p is a cut-off, whose explicit appearance is due to the non-renormalizability of 

gravitational interactions, and which is probably to be fixed around Mp: /L - Mp. 

The advantage of breaking supersymmetry through gravitino condensation is its model in- 

dependence: it is sufficient to have a chiral superfield corresponding to some flat direction in 

order to generate the breaking. Moreover, the fact that it is possible to find explicitly a com- 

putational scheme yielding a non-zero (&bli)“*) is extremely attractive. The generality of this 

phenomenon may furthermore extend to string theories, because the relevant gravitational in- 

stantons (Eguchi-Hanson metrics) are hyper-KZhler manifolds, so that they might be promoted 

to exact solutions for the string equations of motion by allowing a non-zero three index tensor 

H WYP’ Within the computational framework of ref.[5,9], on the other hand, it is rather difficult 

to evaluate another key quantity in the description of the supersymmetry breaking, namely the 

value of the cosmological constant A. One haa to check indeed whether A remains zero even 

after the breaking, or if it develops instead an unacceptably large value. We think this to be a 

question worth of investigation and we wilI try to give it an answer in the rest of this paper. 

We take here the effective action approach, which has been proven already to be a powerful 

tool for investigating globally supersymmetric gauge theories like Super Yang-Mills[l’] or Super 

QCD[lll. In order to justify this approach in supergravity one must assume that a consistent 

theory of gravitation exists. The important point is that, whatever this theory might be, at 

low energies it will reduce to Einstein gravity coupled to matter, or, when the supersymmetry 

breaking scale is below Mp, to a N = 1 supergravity coupled to matter. At still lower energies, 

where the super-Higgs effect occurs, one should write an effective Lagrangian which, still having 

the form of a N = 1 theory, contains only the relevant dynamical degrees of freedom. In our 

case these are the gravitational supermultiplet and the goldstino superfield. The gravitational 

supermultiplet contains the graviton (5) and the gravitino ($,,), in addition to auxiliary fields, 

A, ==d J&v, which we choose according to the new-minimal formulation of supergravity [6,12,131~ 

The goldstino supermultiplet contains the spin l/2 fermion providing the helicity states &l/2 

of the massive gravitino. Since the field whose supersymmetry transformation is non-vanishing 
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is composite (see eq. (2)), we should expect a composite superfield to play the r6le of the 

Goldstino. 

Before entering into the details of the nature of this composite field we must constrain 

as much as possible the form of the effective Lagrangian. To this purpose eq. (2), and in 

general any anomalous transformation law, proves useful. We will indeed write the effective 

Lagrangian as a sum of two parts. The first one respects all classical symmetries of the theory, 

and in particular it is invariant under the chiral U(l) transformation of eq. (2). We will call it 

the kinetic term LK, and write it as a D-type density (for an introduction to the techniques of 

super-conformal tensor calculus see e.g. ref.[l2]): 

LK = [VI, = e{D+(V, + $jp~s+w~&Bp 

- $5 .77sX} + surface terms. 

In eq. (4) V is a real superfield of chiral weight n = 0[121 with components: 

(4) 

V = (C,x, H, K, v,, A, D). (5) 

The second part is an F-type density ~~1 and it reproduces, at the classical level, the anomaly 

equations, while being invariant under the non-anomalous symmetries of the theory. Already 

from this fact we see that 22 cannot be the light superfield providing the goldstino degrees of 

freedom. 2.Z has in fact chiral weight zero. Since, in order to reproduce the anomaly equations, 

we need a field shifting under a chiral transformation, the natural choice is to assume 

to be the effective composite field. The power of three is a matter of convenience and /J is an 

energy scale, yet to be determined. 

To determine completely the effective Lagrangian let us examine the symmetries of the 

fundamental theory. The first one, already mentioned, is a chiral U( 1) acting in the following 

way on the fields of the theory: 

z + @/3Z, A = constant, (7) 

all the other fields being invariant. The anomalous variation of the action under this U(1) is171: 

I 
&L + -A 

384x2 I 
d% d’t’ & Tab T”* A z - &-&Tab T”*A]F. (8) 

In eq. (8) E is the chiral superspace density, while Z’,,~?P* is the supersymmetric extension 

of the Gauss-Bonnet and Hirzebruch densities in the new-minimal formulation [141. In other 
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words, T-b T” is a chiral superfield whose F and G components are respectively Ro~ l Rakd 

and R,adpdef l R$ . 

There is still another U(1) invariance to take into account, namely the chiral R-symmetry of 

the super-conformal group[121, acting on the various fields in the following way ( Z = (z, x, h) 

1: 
62 = -ii,, 6x= 1 

3x1 
Jh = iih, 64, = -i$w, (9) 

all other fields being invariant. 

Since: 

S=log~=(log~, 5x, ;h + &XL) = (s,xs, b-1, 

we get: 

6.5 = (-2i,ixs, 2ihs). 

Under the R-symmetry described above, the action transforms anomalously a&151: 

(11) 

6 
I 

d%L = -+7N3,, - N,,,) / d4+‘$ Rabml W- 
38479 

= 384x1 
---f-(7N3/, - N,,,) J d’9d’x E Tab Tab, 

where in our model Ns/g = N,l, = 1. 

(12) 

In eq. (12) the first contribution comes from the anomaly of the spin-3/2 fermion, the 

second from matter fermions. From eqs. (8,12) we can determine the F-term in the effective 

Lagrangian to be: 

LF = [c], = e{i + +7 ’ 41, + +ab.b+Lb}, (13) 

where L‘ = (2, go, iL) is: 

c &[s To* Tab - 4T.b Tab log z;Fb]. (14) 

Since 6(TdTab)l = -2i(T,bTab)= the effective action described in eqs. (13,14) reproduces 

correctly, at the classical level, all of the anomalies of the fundamental theory. In particular, 

it gives also the trace anomaly with the correct coefficient for the new-minimal formulation@], 

where the contribution of the gravitational multiplet to Z’,” is & [6,15] (in the old-minimal 

it would be &). A comment here is in order. The effective lagrangian of eq. (13) reproduces 

correctly, at low energies, all 1PI vertices of the “fundamental” theory. It is this requirement, 

that fixes the form of the anomalous part. Explicitly, the anomalous variations of all the 

functional derivatives of the effective action, with respect to the low energy fields, must coincide 
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with the analogous quantities of the exact theory. The absence of zero modes for the spin- 

l/2 fermions on a gravitational instanton does not affect the derivation, in that it follows 

from the presence of boundary terms in the Atiyah-Patodi-Singer formula for the gravitational 

anomaly[151. Functional derivatives of boundary terms, on the other hand, can not modify 

(local) l-PI vertices. 

The explicit form of T,bTab was given in ref.[l4]. In terms of the superconformal field- 

strengths &;.‘,, Rzb and $,b they found: 

Tab Tab = (&);(hd)L + d(kd&,b - 2&i) ‘kb 

+e2 2(&)Li&*($.b)R - &*& + ;&&*A:*, 
i 

+ g,C, l k;s} (15) 

The definitions of $,,b, & and &$ are as folIows[141: 

@b = R; - $h{@, uab}ti - +‘.b,%+i’cded (16) 

$+ = Ff + ;$@b - &,(T + ;y -y . T) (17) 

li, PW = D[=A] ,‘Aw = ;d,. 08) 

Notice that on shell $, + ir;$,,, = 0, and that we used the short-hand notation 1c, = $,,d+” 

and ~~ = ;767b*&. The derivative D: is covariantized with respect to the A, gauge field, 

and: 

F,t = DCA,,. (19) 

The fundamental property of eq. (15) is that each component is a local total derivative. More 

precisely, the F component of eq. (15) can be rewritten, according to eq. (14), as[141: 

[Tab TblF = -R.fbR.+6 - iR,f, l R,‘b + 2F+’ 

(20) 

In eq. (20) we have made manifest the decomposition of [Td 9’0~1~ into a part which is a local 

total derivative and a part which can be globally written as the divergence of a well defined 

quantity. The integral of the latter, but not of the former, vanishes. Notice that in eq. (20) we 

have used the form-notation, so that F+’ E F+ A F+ (i.e. dA A F+). 

To evaluate the effective Lagrangian coming from eqs. (5), (14) and (15) we make the choice 

V = F(S,S) in eq. (5), where, for the positivity of the potential, we have to assume 112,141 

g > 0. F will for the rest remain unspecified, a detailed computation of it being a non-trivial 

dynamical problem. For our purposes its precise form will not be needed. 
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To evaluate the F-term in eq. (15) we use the formula for the multiplication of chiral 

multiplets: 

f(C) = (nZ)7 X’fi, h’fi - iR&,fij) 9 (21) 

with C’ = zi + Ox’ + 1/2O’h’ and f; = af/az’. 

From eq. (21) the F-density for S Tab “Tab reads: 

[ST,bTnb]F = s -RzbRzb -iR,f,*R,f, + 2F+’ -d 
( i 

S(D+$) -F(T + ;7 7 T + Jw,)}) 

+hS(‘$ob)L 7’bb)L - ;?$Wab), + +%d?iib)L *(?b’.b)L. (221 

In a similar way we obtain: 

[T.bT”‘log TnLy’b]~ = - log (‘ab)r’\‘ab)’ [RzbRLb + iRT6 l Rzb - 2F+’ 

+d 8(D++) {- +(T + i7 7 . T + @$n)}] + $a6 -b)xr”vL 

-&(T.” -bMTab Tab), + (Tab T”*)h. 
In a maximally symmetric background, where the bilinear (&,)L($.~)L acquires a non-zero 

vacuum expectation value, hereafter called C, it is easy to evaluate the scalar potential for the 

effective supergravity Lagrangian. The only relevant terms in eqs. (5), (22) and (23) are in 

fact[141: 

/d’zL=Jd’ze{~ez”R+~F.ih,hj+h.C+h.c.}, 

with e? = 1 -SF, and F, G aF/as. 

(24) 

The Einstein term in the action has been retained to find the correct resealing of the potential 

term, corresponding to the normalization J d% eR/2. 

After solving for h. and performing a Weyl resealing of the action in eq. (24) according to 

e; -+ e*e;, we arrive at the action: 

(25) 

Eq. (25) is the main result of our investigation; it shows that by breaking supersymmetry 

through the introduction of a gravitino field-strength condensate one develops a cosmological 

constant of the order of ICl’/M:. Th IS result is independent of the specific form of F(S,S). 

The only requirement, namely the positivity of Fez, being indispensable in order to guarantee 
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the positivity of the kinetic terms for the scalar multiplet S [12,14]. The fact that our result is 

independent of F is a most welcomed feature, since the effective Lagrangian approach cannot 

fix uniquely the exact form of F. 

The introduction of more general interactions is not going to change this picture, as long as 

the breaking is completely due to the non-perturbative gravitino condensate. The only change 

is in the definition of S, that in a more general case will be the (composite) Goldstino superfield. 

The only way to keep the cosmological constant small would be by introducing a super- 

potential at tree level, giving a negative contribution to the vacuum energy which could be 

canceIled by the gravitino condensate. 

The situation analyzed in this paper refers to the simple case of pure supergravity with a 

single sliding chiral field. In order to extend our considerations to strings several points have to 

be clarified. First of all, one should find viable way of computing instanton effects in strings and 

show that the particular metric chosen to produce the non-perturbative effect (Eguchi-Hanson) 

is indeed a solution of the string equations of motion. This is probably possible, since the 

gravitational instantons of Eguchi and Hanson[161 are hyper-KZhler manifolds, and therefore 

probably conformal field theories on the sphere[171. 

Secondly, the r6le of the antisymmetric field B,, and its field strength If++, has to be 

clarified. On a non-trivial background, in fact, it is not possible to set H,, = 0. One should, 

instead, solve the equation of motion for BW consistently together with Einstein’s equations. 

The presence of a non-zero Hpvp seems to introduce, at least for large instantons, of size a >> 

W, an exponential enhancement in the scale of the gravitino condensation, because of the 

weight factor, 
e+ Jd’&,.w,e&i’“P 

7 (26) 

in the functional integral yielding (&,b+““). I?,,,, is the value of Hwp given by the equations 

of motion, which are quadratic in B,,. This phenomenon would signal that, even in the string 

effective-supergravity lagrangian, a nonvanishing gravitino condensate could destabilize the 

perturbative vacuum1 

Gravitino condensation is at the moment an interesting way of breaking supersymmetry, 

owing to the model-independent character of the mechanism; still, to make it fit into a stan- 

dard low-energy scenario, with rn3i1 - O(lTeV) and A << 10-4(eV)4, other phenomena must 

be invoked. 

‘In the Gross-Neveu model, for instance, the gauge invariant quantities behave as el/#’ for small coupling 
constit 9 in the symmetric (unstable) ~acuun~. 
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